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Key Programs

Aeronautical Research Mission Directorate: Aviation
Safety Program

NASA Engineering and Safety Center

Exploration Systems Mission Directorate - Exploration
Technology Development Program, ISHM Project

Shuttle Program - Wing Leading Edge Impact
Detection

Science Mission Directorate - AISRP

All schematic diagrams and pictures in this presentation
are publicly available on the Internet.




NASA Data Systems

e Earth and Space Science

— Earth Observing System generates ~21 TB of
data per week.

— Ames simulations generating 1-5 TB per day

e Aeronautical Systems

— Distributed archive growing at 100K flights per
month with 1M flights already.

e Exploration Systems

— Space Shuttle and International Space station
downlinks about 1.5GB per day.




Characterizing the Large Scale ¥

Structure of the Universe

SDSS DR3 GREAT Spectra

There are between 125 and 500 billion
galaxies in the universe.

Obtaining a good estimate of their 3-D
position in the sky would help determine
the filamentary structure of the universe
to constrain cosmological models.
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We are building machine learning methods
to estimate the redshift of galaxies using
broad-band photometry.
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If these estimates are of high enough e
accuracy, it would enable a better
understanding of how the universe evolved after the Big Bang.
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Prediction Accuracy

Our ensemble
B Lo models produce the

B Quadratic
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Outline of Talk

Categorizing and
detecting anomalies
described in safety
documents

Detecting anomalies Detecting Shuttle
in cockpit switching wing heating
sequences anomalies




The Forensic (Historic) Approach to
Accident Prevention
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... a More Prognostic Approach

Identify

A Strategy
for Safety
mprovemen

Formulate

Proactive risk management leads o
decisions before an accident occurs




... a More Prognostic Approach

e |dentify e Formulate
— Monitor and compare — Consider change
with expectations. — Cost-benefit estimate

— Uncover potential — Assess safety risk
hazards

e Evaluate e Implement
— Diagnose causation — Implement locally
— Quantify frequency — Evaluate intervention

— Assess severity — Refine
— Implement full scale

Proactive risk management leads to
decisions before an accident occurs




Distributed National Archives
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A ASRS Report Excerpt

JUST PRIOR TO TOUCHDOWN, LAX TOLD

US TO GO AROUND BECAUSE OF THE IN

FRONT OF US. BOTH THE AND I,

HOWEVER, UNDERSTOOD TWR TO SAY,

' TO LAND, ON THE . SINCE

THE IN FRONT OF US WAS OF THE
AND WE BOTH

RADIO CALL AND CONSIDERED IT AN

ADVISORY, WE LANDED...




Automatic Categorization of
ASRS Reports

ASRS Report Extract

JUST PRIOR TO
TOUCHDOWN, LAX TWR TOLD
US TO GO AROUND BECAUSE
OF THE ACFT IN FRONT OF
US. BOTH THE COPLT AND I,
HOWEVER, UNDERSTOOD
TWR TO SAY, 'CLRED TO
LAND, ACET ON THE RWY."
SINCE THE ACFT IN FRONT
OF US WAS CLR OF THE RWY
AND WE BOTH
MISUNDERSTOOD TWR'S
RADIO CALL AND
CONSIDERED IT AN
ADVISORY, WE LANDED...

Sample of 60 ASRS
Anomaly Categories

Non Adherence to ATC Clearance

Critical EQuipment Problem

Runway Incursion

Landing without a Clearance

Air Space Violation

Altitude Deviation Overshoot

Fumes

Altitude Deviation Undershoot

Ground Encounter, Less Severe
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Classification Task

e Automatically map safety reports into
Distributed National ASAP Archive (DNAA)
anomaly categories.

New reports entering the DNAA can then be
automatically categorized by the classifier.

e« Comparison among Natural Language
Processing (NLP), statistical methods, and
Mariana, which is based on advanced data
mining techniques.




Data Mining Approach

Convert documents into a vector space

representation “Bag of Words” matrix. Frequency
of term in
document

Learn the mappings from documents to |
categories.

Term1 | Term2 | Term 3

. . Documen
Typical matrix: Mo f1]o
— 30,000 rows
— 40,000 dimensions

Document
! o| 3| o0




The Support Vector Machine

Given a set of p-dimensional data

Use a possibly infinite dimensional operator
to map the data into a feature space.

Perform linear operations in the feature space.
Map result back to the original space.

Can do this operation without explicitly computing

D (x. High-dimensional
X-space feature space
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An Example Mapping

Using a kernel function K(x;,x;) = <x,,x> two- dlmen5|onal
data gets mapped to three dlmensmns e

Unique
Linear
Decision
Boundary




Text Mining with SVMs

We built 23 instances of a Support Vector Machine, each
tuned to classify ASAP documents into DNAA anomaly
categories with advanced noise reduction methods.

e We developed Mariana, an advanced Markov Chain
Monte Carlo (MCMC) algorithm to find the best SVM
hyperparameters.

e Kernel induces an infinite dimensional feature space.

2
” X; _Xj ”
2
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Hyperparameters in SVMs

min{ K(x,x) + CwX. g }, where ¢, = soft margin, and
where C = error penalty parameter

K(x, x) = exp{-y|l*x|},  where y = scale parameter

w, y;=1 (in the class)
w, class penalty parameter ={ 1 J; = -1 (out of the class),

w, C, y are model inputs




Mariana Statistical
Optimization Methods

Current Approach: Simulated Annealing Possible Future Approach: Particle Filter
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Accepted step

— Accepted, but at lower value * Less likely to be optimal (maximum) solution
Rejected step ® More likely to be optimal, i.e., global max, solution




4 Natural Language Processing s

e NLP extracts and represents concepts In
text documents.

e Potentially thousands of hand-crafted
rules to extract meaning.

e Example: Identify reports describing
“pilot fatigue”
— Search for: ‘fatigue’, ‘tired’, ‘last leg of an X
day trip’, ‘sleepy’, ...
— If a document has any of these phrases, tag
It as a ‘fatigue’ document.




A Comparing NLP to Data Miningwass

NLP Data Mining

e \ery precise e Very imprecise
representation of representation of
concepts. concepts.

e Large hand-crafted e Word frequencies.
rule bases.

e \Very expensive due e |nexpensive in terms
manual rule building. of manual work.

The output of NLP systems can be fed into data mining
algorithms to improve accuracy.




, Comparing un-optimized SVM and
/5 Standard Methods using NLP inputs
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, Comparison of Mariana with Raw Text
A4 and SVM with Raw Text + NLP
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Comparison of NLP and
Mariana
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Mariana’s performance with raw text matches the performance with text and NLP.




~Mariana to be deployed
Carriers

Auto-Categorization Demo

Events to be Processed 6d

=

at Air

Stop Monitoring
User Id : Analyst

Recover processed events

Analysis Processed

: PM requested that the PF fly t

o2 During Climbout, at 3000, air
: On landing Gate swithcd from E

67 : ATC cleared us direct to FOD.
70 : We were coming in to bugge on
71 : We accepted the clearance to a

72 : Cleared direct ABR on the AER

E

73 : During climb with the autopilo

21 : First Officer was off frequency whe

23 : While parking at the international

o6 After being cleared the WISUAL approach to 19L at LAS, the Ca( flying pilot) INITIATED descent on the
base leg and we RECEIVED a GP'WS TERRAIN WARNING. He immediately climbed to from 5000 feet to
5300 feet. We could VISUALly see the TERRAIN below us and after clearing it continued with the
approach. ATC was very busy and it took quite some time to confirm which runway to expect prior to
the approach clearance. Both of us were quite fatigued as we were arriving a little over 3 hours past
scheduled arrival time due to our original aircraft diverting from Cleveland.

26 : We took off from runway 1 at DCA. W
32 : At SJC during preflight duties we w

43 : We arrived at the aircraft on time
44 : F/0 flying the aircraft on the DYLI
48 : During pushback, frantic call from
63 : Onvector to visual approach to 19L

64 : After being cleared the visual appr

66 @ We were in cruise on Kasper arrival

Course Deviations
Go Arounds

Landing Events

Operation In
v

Moncompliance

Terrain Proximity
Events

o8

!'.

LAS  FLYING EXPECT WARNING ARRIVING
VISUAL  INITIATED RECEIVED  FLYIMG  BASE
TERRAIN  VISUAL BASE CONFIRM  ORIGINAL

SCHEDULED  TERRAIN  WARNING  COMFIRM  CONTINUED

TERRAIN ~ WARMING  IMITIATED WVISUAL  RECEIVED




Our Innovations

e Mariana searches for the best SVM
hyperparameters using Markov Chain Monte
Carlo techniques.

Mariana performs as well as or better than
the SVM built using NLP techniques without
the overhead.

Our methods for term selection and noise
reduction reduce false positive rates by as
much as 30%o.




Searching for Recurring Anomalies »ass

& NASA Mishap and Anomaly Information Systems (MAIS) - Mozilla Firefox \;”Eﬂj
°

Enabling discovery of
anomalous trends in

complex aegﬁg'z%%i ECS Mishap and Anomaly

Information System
Research sponsored by: _TFeaf"fisl |
NASA Engineering and
Safety Center

Netmark XDB Search  Context

- What / Why Population
Report Graph

- Mishap Reports

- NETMARK Search




Searching for Recurring Anomalies NA

These reports do not have an anomaly category
associated with them.

Potentially several hundred thousand reports.

Some systems have been around for decades.

Enables analysis of trends of anomalies (trending).

Can’t be addressed using standard clustering techniques.

Our systems use content-based similarity as well as
statistical similarity.




NESC Definition of
Recurring Anomalies

Recurrent failures described
in text reports.

Problems that cross
traditional system
boundaries.

Problems that have been
accepted by repeated
waivers.

Discrepant conditions
repeatedly accepted by
routine analysis.

Events with unknown
causes.



Detecting Recurring Anomalies

1. Calculate cosine similarity between all
document vectors.

s0, = <ab>
|all-[[b]l
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2. Apply agglomerative clustering.




Detecting Recurring Anomalies

3. Identify referenced documents.

a1| 93] |d6

d2 d4

If d1 refers to d2 and d4, and d4 refers to d6, then
d1, d2, d4, & d6 are considered a recurring anomaly.




Detecting Recurring Anomalies

4. Identify & visualize possible recurring anomalles.




Testing the Recurring Anomaly
Detection System (ReADS)

e Experts reviewed a subset of the Shuttle Orbiter
Corrective Action Records (CARs) to identify
recurring anomalies.

We extracted 333 reports to test the
performance of our system called REcurring
Anomaly Detection System (ReADS).

Of those 333 reports, the experts identified 20
recurring anomalies and ReADS identified 39
recurring anomalies.




Performance of ReADs

On a subset (333) of the Shuttle Orbiter Records:

58% of the records were eliminated as non-recurring anomalies (RAs) by
ReADS.

12 exact matches between RAs discovered by experts and RAs
discovered by ReADS.

6 previously unidentified RAs discovered by ReADS which were
confirmed by experts.

1 record was identified by experts as being part of an RA and was
missed by ReADS.

5% of the expert RAs were separated by ReADS into more than one RA.

8% of the ReADS RAs combined two expert RAs into a single RA.




Our Innovations

e Enable analysis of anomaly trends using a
combination of content and statistical search
methods.

ReADS is a novel tool designed especially for
identifying recurring anomalies across multiple
databases.

Development of robust platform to analyze
and visualize recurring anomalies.




Detecting Anomalies in Cockpit
Switch Sequences

Enabling
discovery of
anomalous
switching events

Research
sponsored by:

NASA ARMD




Background

e sequenceMiner analyzes large repositories of
discrete sequences and identifies operationally
significant anomalies.

Learns the typically observed switching patterns
directly from discrete data streams.

This method outperforms others in terms of
speed, comprehensibility, and stability, and
does not require knowledge of Standard
Operating Procedures.




Example Sequence Anomaly
Detection Problem

Typically Observed Switching Patterns

ABCDADDA(%FQ...
Y

Example Observed Switching Sequence

ABGFQCDADDA..
Y :

A

Problems: (1) Discover Typically Observed Switching
patterns given thousands of flights.

(2) Discover outlying sequences.




Outline of Approach

sequenceMiner discovers typically observed switching
patterns using Multiple Sequence Alignment.

— Normalized Longest Common Subsequence as a similarity
measure

— Optimized for speed. Analyzes 7400 flights in 6 minutes.

sequenceMiner discovers:
— Switches absent in an expected sequence position.
— Switches inserted in an unexpected sequence position.
— Switches that are out of order from what is expected.

sequenceMiner describes why flights are called
anomalous and provides a degree of anomalousness.




Multiple Sequence Alignment (MSA) as%

e Used Iin bioinformatics to compare DNA
sequences of organisms descended from a
common ancestor.

Can identify mutation inside a sequence by
comparing it to other sequences.

In the context of flights, these mutations are
the points where a flight deviated from the
norm.




Incorporating Operational
Information

e Weighting of Switches
— Measures its importance to flight.
— Used during clustering and anomaly detection.

— Sequences are identified that have more highly
weighted switches out of sequence, instead of
simply the number of switches out of sequence.

e |[gnore order of switches within a one-minute

time interval.
— This step reduces alarms by around 30%.




Data and Methodology

 Initial Dataset
— 7400 flights from a single fleet and airline.

— Recordings of 1038 primary and secondary binary
switches.

— 111 primary switches were selected from a subset of
2225 flights.

— Landing phase to a specific destination airport.

e The 13 most anomalous flights identified by
sequenceMiner were analyzed by a 747 pilot who
was our expert.

— 5 were judged to be bad data.
— 3 were judged to be normal.

— 5 were judged to be operationally significant
anomalies.
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atypical times. Possible engine malfunction.”




sequenceMiner Discovered Anomalous
Engagement of the Autopilot (Red Bars)
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sequenceMiner Discovered Anomalous
Usage of Speed Brakes (Red Bars)
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Our Innovations

e sequenceMiner is a fast and reliable system to
learn typically observed switching patterns
from large volumes of discrete data.

This system outperforms other algorithms in
terms of speed and reliability.

Discovers operationally significant events such
as mode-confusion and high-energy
approaches.




Detecting Anomalies In
Shuttle Systems

Enabling discovery of
anomalles in continuous
data streams

Research sponsored by:

NASA ESMD ETDP -
ISHM Program




DATA NOMINAL MONITORING
VECTORS OPERATING KNOWLEDGE

SYSTEM TO REGIONS BASE
MONITOR

IMS learns nominal system behavior from archived or simulated system data,
automatically builds a “model” of nominal operations, and stores it in a knowledge base.

MONITORING

E=F=SsT=m Real-time data =
- o’ _ or other data "iii_% | —ii ‘H

to be analyzed i s

IMS real-time monitor & display informs users of degree of deviation from nominal performance.
Trend analysis can detect conditions that may indicate incipient failure or required system maintenance.




STS-107 Launch Analysis

e The IMS method can help identify subtle but
meaningful changes in system behavior.

e A comparison of STS-107 ascent telemetry
data to data from previous Columbia flights
Indicates that there may have been enough
Information to detect a wing-heating
anomaly.




STS-107 Ascent - IMS Analysis

Lower Wing Skin Temp Upper Wing Skin Temp
* Data vectors formed from

4 temperature sensors MLG Outbd Wheel Temp
inside the wing

e Data covered first 8 minutes
of each flight (Launch to
Main Engine Cut Off)

e Trained on telemetered data
from 10 previous
Columbia flights

Normalization:

e Data expressed as value
relative to a reference
sensor © sensor Inbd Elevon Actuator Temp
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STS-107 Launch IMS Analysis
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Our Innovations

The IMS system automatically learns a model
for nominal behavior to detect system
anomalies.

Orca provides a flexible platform to detect
anomalies in massive data sets.

IMS is used to detect wing impacts in support
of STS-121 and STS-115.

IMS will be deployed on Console at Mission
Operations Directorate, JSC.




Conclusions

e Demonstrated transparent mining of discrete,
continuous, and textual information to uncover
safety anomalies.

Enabling automated analysis of the Distributed
National ASAP and FOQA Archives.

The methods we discuss provide a
comprehensive capability to monitor, detect,
and analyze system anomalies.




Future Directions

Advanced methods to analyze heterogeneous data sets.

Prognostic and diagnostic methods for aircraft and space
systems.

Potential new book on text mining (Srivastava and
Sahami): A collaboration between NASA and Google.

SIAM Text Mining Competition: Classification of ASRS
reports, sponsored by NASA .

Data Mining in Science, Aeronautics, and Exploration
Systems Conference 2007




£

References

A. N. Srivastava, “Learning Kernels with Mixture Densities,” in preparation for IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2005.

A. N. Srivastava, “Mixture Density Mercer Kernels: A Method to Learn Kernels Directly from Data, Proceedings of the
2004 SIAM Data Mining Conference, Orlando FL.

. Srivastava and N. Oza, “Knowledge Driven Image Mining with Mixture Density Mercer Kernels,” European Space
Agency Special Publication #553, Proceedings of the European Image Information Mining Coordination Group,
Madrid, Spain 2004.

. Srivastava and B. Zane-Ulman, “Discovering Hidden Anomalies in Text Reports Regarding Complex Space
Systems”, IEEE Aerospace Conference, Big Sky, MT, 2005.

. Srivastava, “Discovering Anomalies in Sequences with Applications to System Health,” Proceedings of the 2005
Joint Army Navy NASA Air Force Interagency Conference on Propulsion, Charleston SC, 2005.

. Srivastava, R. Akella, et. al., “Enabling the Discovery of Recurring Anomalies in Aerospace System Problem
Reports using High-Dimensional Clustering Techniques,” accepted for publication in the 2006 Proceedings of the
IEEE Aerospace Conference.

. Way and A. N. Srivastava, “Novel Methods for Predicting Photometric Redshifts from Broadband Photometry
using Virtual Sensors.” Astrophysical Journal, 647:102-115, 2006.

. Budalakoti, A. N. Srivastava, R. Akella, “Discovering Atypical Flights in Sequences of Discrete Flight Parameters,”
accepted for publication in the 2006 Proceedings of the IEEE Aerospace Conference.

M. Schwabacher, “Machine Learning for Rocket Propulsion Health Monitoring, “SEA World Aerospace Congress, 2005.

S.D. Bay and M. Schwabacher, “Mining Distance-Based Outliers in Near Linear Time with Randomization and a Simple
Pruning Rulem,” KDD-2003.

D. lverson, “Inductive System Health Monitoring,” Published in the Proceedings of The 2004 International Conference
on Artificial Intelligence (IC-AlI'04), CSREA Press, Las Vegas, NV, June 2004.




References

B. Amidan, and T. Ferryman, “Atypical Event and Typical Pattern Detection within Complex Systems,” IEEE Aerospace
Conference, 2005.

L. Atlas and G. Bloor, An evolvable tri-reasoner ivhm system, I1SIS Vanderbilt Website (1999).

A. Banerjee, I. Dhillon, J. Ghosh, and S. Sra, Generative model-based clustering of directional data, 2003.
T. Cormen, C. Leiserson, R. Rivest and C. Stein, “Introduction to algorithms”, The MIT Press; 29 edition.
1.T. Joliffe, Principle component analysis, Springer, 2002.

Eamonn J. Keogh, Selina Chu, David Hart, and Michael J. Pazzani, An online algorithm for segmenting time series,
ICDM, 2001, pp. 289-296.

T. Lane, “Machine Learning Techniques for the computer security domain of anomaly detection” , Ph.D. Thesis,
CERIAS TR 2000-12, Purdue University, August 2000.

M. Last, Y. Klein, and A. Kandel, Knowledge discovery in time series databases, 2001.

R.T. Ng. and Jiawei Han, “CLARANS: a method for clustering objects for spatial data mining”, IEEE Transactions on
Knowledge and Data Engineering, Volume 14, Issue 5 (Sept/Oct 2002), Pages: 1003-1016.

L. R. Rabiner, A Tutorial on hidden markov models and selected applications in speech recognition, Proceedings of
the IEEE 77 (1989), no. 2, 257-286.

K. R. Pattipati J. Ying, T. Kirubarajan and A. Patterson-Hine, A hidden markov model-based algorithm for online fault
diagnostic with partial and imperfect tests, IEEE Transactions on SMC: Part C 30 (2000), no. 4, 463-473.

D.B. Skillicorn, Clusters within clusters: Svd and counterterrorism, SIAM Workshop on Counterterrorism (2003).




References

L. Connel, “Incident Reporting: The nasa aviation safety reporting system” ,GSE Today, pp. 66-68, 1999.

T.K. Landauer, D. Laham, and P. Foltz, “Learning human-like knowledge by singular value decomposition: A progress
report,” in Advances in Neural Information Processing Systems, M. |. Jordan, M. J. Kearnes, and S. A. Solla,
Eds., vol. 10. The MIT Press, 1998. [online]. Available: cite-seer.ist.ppsu.edu/landauer/98learning.html.

T. Joachims, “A Probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization,” in Proceedings of
ICML-97, 14t International Conference on Machine Learning, D. H. Fisher Ed. Nashville, US: Morgan Kaufman
Publishers, San Francisco, US, 1997, pp. 143-151.

I.T. Jolliffe, Principle Components Analysis. New York: Springer Verlag, 1986.

M.I. Jordan and R.A. Jacobs, “Hierarchical mixtures of experts and the EM algorithm, Tech. Rep. AIM-1440, 1993.
[online]. Available: citeseer.ist.psu.edu/article/jordan94hierarchical.html.

J.W. Sammon, “A nonlinear mapping for data structure analysis,” IEEE Transactions on Computers, Vol. C-18, pp.
401-409, 1969.

A. Ng. M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” 2001. [Online]. Available:
citeseer.ist.psu.edu/ng0Ol1spectral.html.

C. Linde and R. Wales, “Work process issues in nasa’s problem reporting and corrective action (praca) database,”
NASA Ames Research Center, Human Factors Division, Tech. Rep., 2001. [Online]. Available: human-
factors.arc.nasa.gov/aprilO1-workshop/2pg.linde3.doc.




References

References for slides on IMS

D. Dvorak and B. Kuipers. “Model-Based Monitoring of Dynamic Systems ”, Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence (1JCAI-89), Morgan Kaufman, Los Altos, CA., 1989.

R. Reiter. “A Theory of Diagnosis from First Principles”, Artificial Intelligence, 32(1):57-96, Elsevier Science, 1987.

P.S. Bradley, O.L. Mangasarian, and W.N. Street. “Clustering via Concave Minimization”, Advances in Neural Information Processing
Systems 9, M.C. Mozer, M.1. Jordon, and T. Petsche(Eds.), pp 368-374, MIT Press, 1997.

P.S. Bradley and U. M. Fayyad. “Refining initial points for K-means clustering”, in Proceedings of the International Conference on
Machine Learning (ICML-98), pp 91--99, July 1998.

M. Ester, H-P Kreigel, J. Sander, and X. Xu. “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise ", Proceedings of the 2nd ACM SIGKDD, pp 226-231, Portland, OR, 1996.

W.C. Hamscher. “ACP: Reason maintenance and inference control for constraint propagation over intervals ”, Proceedings of the 9th
National Conference on Artificial Intelligence, pp 506-511, Anaheim, CA, July, 1991.

J.M Kleinberg. "Two Algorithms for Nearest-Neighbor Search in High Dimensions”, Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pp 599-608, El Paso, TX, May, 1997.

H.W. Gehman, et al., “Columbia Accident Investigation Board Report”, U.S. Government Printing Office, Washington, D.C., August
20083.




References

References for slides on sequenceMiner

L. Kaufman and P.J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis,John Wiley and Sons,
Inc., New York (1990).

T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to algorithms, The MIT Press; 2nd edition.

James W. Hunt and Thomas G. Szymanski, A Fast Algorithm for computing Longest Common Subsequences.
Communications of the ACM, Volume 20, Issue 5 (May 1977),Pages: 350 - 353.

D. S. Hirschberg, Algorithms for the Longest Common Subsequence Problem, Journal of the ACM, Volume 24, Issue 4
(October 1977),Pages: 664 - 675.

D. S. Hirschberg, A Linear Space Algorithm for computing Maximal Common Subsequences, Communications of the
ACM, Volume 18, Issue 6 (June 1975),Pages: 341 - 343.

L. Bergroth, H. Hakonen and T. Raita, A Survey of Longest Common Subsequence Algorithms, Proceedings of the
Seventh International Symposium on String Processing Information Retrieval(SPIRE), 2000.

K. Sequeira and M. Zaki, ADMIT: Anomaly based Data Mining for Intrusions, Proceedings of the Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining(SIGKDD), 2002.

Scott Coull, Joel Branch and Boleslaw Szymanski, Intrusion Detection: A Bioinformatics Approach, Proceedings of the
19th Annual Computer Security Applications Conference(ACSAC), 2003.

A. Banerjee and J. Ghosh, Clickstream Clustering using Weighted Longest Common Subsequence, Proceedings of the
1st SIAM International Conference on Data Mining (SDM): Workshop on WebMining, 2001

T. Lane and C. Brodley, Temporal sequence learning and data reduction for anomaly detection, ACM Transactions on
Information and System Security (TISSEC), Volume 2, Issue 3 (August 1999), Pages: 295 - 331.

A. N. Srivastava, Discovering System Health Anomalies using Data Mining Techniques, Proceedings of the 2005 Joint
Army Navy NASA Airforce Conference on Propulsion, 2005.




References

References for slides on Orca

C.C. Aggarwal and P.S. Yu. Outlier detection for high dimensional data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2001

F. Angiulli and C. Pizzuti. Past outlier detection in high dimensional spaces. In Proceedings of the Sixth European
Conference on the Principle of Data Mining and Knowledge Discovery, pages 15-26, 2002

V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley & Sons, 1994

J.L. Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):
509-517, 1975

S. Berchtold, D. Keim, and H.-P. Kreigel. The X-tree: an index structure for high-dimensional data. In Proceedings of the
22nd International Conference on Very Large Databases, pages 28-39, 1996

G. Bisson, Learning in FOL with a similarity measure. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 82-87, 1992.

R.J. Bolton and D.J. Hand. Statistical fraud detection: A review (with discussion). Statistical Science, 17(3): 235-255,2002

M.M. Breunig, H. Kriegel, R.T. Ng. and j. Sander. LOF: ldentifying density-based local outliers. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, 2000

W. Emde and D. Wettschereck. Relational instance-based learning. In Proceedings of the thirteenth International
Conference on Machine Learning, 1996

E. Eskin, A. Arnold, M. Prerau. L. Portnoy, and S. Stolfo. A Geometric framework for unsupervised anomaly detection:
Detecting intrusions in unlabeled data. In Data mining for Security Applications, 2002.




